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Abstract
Purpose Sleep-disordered breathing may be induced by, exacerbate, or complicate recovery from critical illness. Disordered 
breathing during sleep, which itself is often fragmented, can go unrecognized in the intensive care unit (ICU). The objec-
tive of this study was to investigate the prevalence, severity, and risk factors of sleep-disordered breathing in ICU patients 
using a single respiratory belt and oxygen saturation signals.
Methods Patients in three ICUs at Massachusetts General Hospital wore a thoracic respiratory effort belt as part of a clinical 
trial for up to 7 days and nights. Using a previously developed machine learning algorithm, we processed respiratory and 
oximetry signals to measure the 3% apnea–hypopnea index (AHI) and estimate AH-specific hypoxic burden and periodic 
breathing. We trained models to predict AHI categories for 12-h segments from risk factors, including admission variables 
and bio-signals data, available at the start of these segments.
Results Of 129 patients, 68% had an AHI ≥ 5; 40% an AHI > 15, and 19% had an AHI > 30 while critically ill. Median 
[interquartile range] hypoxic burden was 2.8 [0.5, 9.8] at night and 4.2 [1.0, 13.7] %min/h during the day. Of patients with 
AHI ≥ 5, 26% had periodic breathing. Performance of predicting AHI-categories from risk factors was poor.
Conclusions Sleep-disordered breathing and sleep apnea events while in the ICU are common and are associated with sub-
stantial burden of hypoxia and periodic breathing. Detection is feasible using limited bio-signals, such as respiratory effort 
and  SpO2 signals, while risk factors were insufficient to predict AHI severity.
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Abbreviations
AHI  Apnea-hypopnea index
ICU  Intensive care unit
PSG  Polysomnography
CCI  Charlson comorbidity index
SOFA  Sequential organ failure assessment
ASWTI  Amplified sleep wake transition instability

ODI  Oxygen desaturation index
SD  Standard deviation
CPAP  Continuous positive airway pressure

Introduction

Sleep-related breathing disorders are common and almost 1 
billion adults across the globe are suspected to suffer from 
obstructive sleep apnea [1]. Untreated obstructive and cen-
tral sleep apnea have been shown to be associated with both 
morbidity and mortality [2–5]. Given that sleep apnea preva-
lence increases with age, obesity, and several medical condi-
tions [6], there is likely a high prevalence of undiagnosed 
sleep apnea in the general population and in hospitalized 
patients [7–11]. Patients admitted to an ICU typically have 
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conditions or disease complications putting them at high risk 
for sleep-disordered breathing.

There are limited data available regarding the prevalence 
of sleep-disordered breathing in the intensive care unit (ICU) 
[12–17] and no data regarding hypoxia specifically associ-
ated with apnea events in the ICU. Existing studies in the 
literature have reported a prevalence of sleep-disordered 
breathing, defined by an AHI > 5, between 47 and 74% in 
patients in the ICU; however, all studies have relatively low 
sample sizes (between 14 and 127 patients) and collected 
data for a maximum of one night per patient only. There is 
conflicting information in the literature about the risks and 
outcomes associated with sleep apnea in critically ill patients 
[18, 19]. The ability to better study the prevalence of sleep-
disordered breathing in the ICU would allow for improved 
understanding of these risks and potential poor outcomes.

The typical diagnostic method for identifying sleep 
apnea is polysomnography (PSG), which includes a variety 
of equipment including electroencephalography. This type 
of study is clinically not feasible in an ICU setting due to a 
variety of factors including the amount of equipment neces-
sary, the condition of the patient, and the patient’s mental 
status. This makes diagnosis and treatment of sleep apnea 
during an ICU stay challenging. Typically, if sleep apnea 
is suspected, patients are referred to a sleep laboratory 
for polysomnography testing after they leave the hospital. 
Therefore, there is a need for methods beyond polysomnog-
raphy to further study the prevalence of sleep-disordered 
breathing and sleep apnea in the ICU setting. An easily 
applied and sufficiently accurate method for detection of 
sleep-disordered breathing apnea may increase the likeli-
hood of treatment during the ICU stay, e.g., using positive 
airway pressure in non-ventilated patients. There are a vari-
ety of options to measure sleep-disordered breathing using a 
subset of the available signals from PSG, including airflow, 
electrocardiogram, oximetry signals, and respiratory effort 
belts. These simplified methods are potential alternatives to 
full PSG testing. Respiratory belts are convenient to use in a 
variety of settings, including in the ICU, as they require less 
equipment, are relatively non-invasive, and typically involve 
simple setup. Additionally, using a thoracic respiratory effort 
signals alone to measure sleep-disordered breathing has been 
shown to provide reliable and valid measurements of sleep 
apnea in outpatient settings [20–23]. However, there are few 
studies that explore the use of thoracic respiratory belts, or 
other simplified apnea detection methods, in the ICU setting 
[15, 17].

In the present study we (a) assessed the prevalence of 
sleep-disordered breathing events for patients in the ICU 
with a wearable respiratory effort belt and oxygen saturation 
signals over multiple days, (b) aimed to measured event-
specific hypoxia and periodic breathing, and (c) investigated 
whether sleep-disordered breathing prediction from risk 

factors is sufficient, or if severity can only be assessed using 
monitoring and biosignal analysis. This study investigated 
sleep-disordered breathing in patients while they were in the 
ICU only, not beforehand or afterwards. Therefore, all find-
ings and results reported below are true for the ICU only; if 
and to what extent sleep-disordered breathing is influenced 
by preexisting disorders or affects post-ICU sleep-disordered 
breathing was generally not addressed here.

Methods

Study oversight and dataset

Adult patients were enrolled after written consent in a ran-
domized quadruple blinded clinical trial, investigation of 
sleep in the intensive care unit (NCT03355053, [24]), at the 
Massachusetts General Hospital (MGH), USA, from June 
2018 to November 2019. Patients were enrolled from three 
different ICUs — medical ICU, surgical ICU, and medical/
surgical ICU. Full inclusion and exclusion criteria for the 
clinical trial are provided in the electronic supplementary 
material. Briefly, the aim of the clinical trial was to investi-
gate the effects of low-dose dexmedetomidine on sleep qual-
ity and delirium; patients were randomized into three groups 
where they were infused overnight for 11 h, starting usually 
at 8 pm, with 0.1 or 0.3 mcg/kg/h dexmedetomidine (low 
dose) or placebo (normal saline). At the time of conducting 
the present study, the clinical study was not concluded and 
due to ongoing blinding, the effects of low-dose dexmedeto-
midine are not analyzed.

Patients were included in this study if ECG and wearable 
belt data were successfully acquired and available for further 
analysis. The study was approved by the MGH Institutional 
Review Board. The results are reported in accordance with 
the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines [25].

Patients agreed to wear a thoracic respiratory belt (Airgo, 
a CE Class IIa certified wearable medical device, Figure E1, 
[26]) as part of the trial during their ICU stay both dur-
ing the day and at night for a minimum of one night and a 
maximum of seven nights. The device measures respiratory 
effort as well as actigraphy [26]. The device was not worn 
when mechanically ventilated, and the cohort contains both 
patients that were intubated earlier or later in their course 
of hospitalization (see Table 1). We collected demographic 
data, information regarding medication administration, ICD-
10 codes, laboratory testing results, and vital signs from the 
hospital’s electronic medical records and bedside telemetry 
monitors, and computed Charlson comorbidity index (CCI) 
[27] and sequential organ failure assessment (Sofa) [28]. The 
 SpO2 data was collected with a standard ICU pulse oximeter 
(Masimo, Switzterland).
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For data analysis, we divided the data collected from 
each patient both into 24-h segments (8 am–8 am) and 
12-h segments (“day”: 8 am–8 pm, “night”: 8 pm–8 am). 
Throughout the study, we used 24-h segments when we 
aimed to assess average measures (e.g., for assigning an 
AHI value for a patient), and 12-h segments when we 
judged a shorter time window to be clinically more mean-
ingful (e.g., for predicting future AHI within the next 12 h 
instead of 24 h) or if we were interested in the differences 
between day and night.

Apnea detection and AHI

The wearable respiratory device uses a 10-Hz sampling 
rate. We used a previously published machine learning 
model trained on the recommended American Academy 
of Sleep Medicine (AASM) scoring criteria [29] (i.e., 3% 
desaturations qualify as hypopnea) that accurately detects 
individual “apnea events” (apneas and hypopneas) and cal-
culates the apnea hypopnea index (AHI) using this wear-
able respiratory signal with  SpO2 signals in a non-ICU 
setting [20]. In a sleep laboratory cohort with expert labels 
available (AHI mean: 11, AHI standard deviation: 13), 
the validation performance was an area under the receiver 
operating curve of 0.94 and an area under the precision-
recall curve of 0.48, an AHI categorization accuracy of 
0.80 and a r-squared of 0.92 when predicting AHI val-
ues [20]. Briefly, the algorithm extracts respiratory and 
 SpO2 features at each second within a 90-s context win-
dow and utilizes a decision-tree-based ensemble classifica-
tion method, a random forest machine learning model, to 
make a binary decision if an apnea event is present. Sleep 
staging to determine wake vs. sleep states was done using 
published deep machine learning models based on res-
piratory and actigraphy signals [30, 31]. Apnea–hypopnea 
detections while patients were awake are not considered 
for analysis.

The apnea–hypopnea index (AHI) was determined by the 
number of apneas per hour of sleep. We defined the AHI 
of patients to be the maximum AHI obtained for their 24-h 
periods of monitoring. We defined periods of amplified sleep 
wake transition instability (ASWTI) (see electronic supple-
mentary material) and repeated the analysis as above with 
this alternative, more relaxed definition of sleep.

For AHI visualization, a swimmer plot was generated. 
We divided the data into 24-h segments (8 am–8 am) and 
12-h segments (“day”: 8 am–8 pm, “night”: 8 pm–8 am) and 
computed the corresponding AHI. Histograms were created 
to show the distribution of AHI per 12-h segments (days and 
nights), with a bin size of 2.5 AHI, and a cumulative ver-
sion showing the empirical cumulative distribution of AHI 
values.

Sleep‑disordered breathing characterization

We determined hypoxic burden, a respiratory event-specific 
hypoxia measure that quantifies the area under the desatura-
tion curve from pre-event baseline, for each 12-h segment 
[32]. We computed hypoxia measures that do not rely on 
apnea detections: the number of oxygen desaturations of 3% 
or more per hour of sleep (ODI) and the fraction of sleep 
spent under an  SpO2 value of 90.

To detect and assess the prevalence of periodic breath-
ing [33] in the ICU, we computed self-similarity [34] in 
the respiration signal around detected apneas. See electronic 
supplementary material for further details.

Subgroup analysis

We computed AHI and the hypoxic burden for subgroups 
and employed t-tests, Mann–Whitney U tests, or one-way 
ANOVA tests to assess differences.

Risk factor analysis

We analyzed the extent to which it is possible to predict 
the maximum observed AHI using variables available at 
admission. Briefly, we used a leave-one-subject-out cross 
validation design and used linear regression, support vec-
tor machine, and random forest models. We also analyzed 
the predictability of the AHI within any given 12-h seg-
ment using “admission variables” and lab-, medication-, and 
vital sign-based variables within the preceding 12 h. The 
input variables for both tasks as well as more details on the 
methodology can be found in the electronic supplementary 
material.

Results

Study oversight and dataset

Out of 189 enrolled patients in the clinical trial, for 129 
patients, ECG and wearable belt data were successfully 
acquired and available for further analysis. Out of these 
129 patients, two had unusable respiration data due to poor 
signal quality. Three patients were excluded due to having 
less than 1 h of detected sleep while wearing the device. 
The remaining 124 patients were included in the analysis 
which yielded 350 12-h data-segments and 265 24-h seg-
ments. Across all data that met inclusion criteria, there were 
4454.90 h of available respiration data from the wearable 
respiratory device and 3702.30 total hours of both  SpO2 
and respiration data available. For all 24-h segments, the 
median ([QR] amount of respiration data available was 
13.80 [10.90–23.90] hours, and the median [IQR] amount 
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of overlapping respiration and  SpO2 data available was 12.35 
[7.30–23.90] hours. The median [IQR] hours of sleep as 
detected by the sleep staging model were 8.90 [4.47–13.40] 
hours, and the median [IQR] hours of sleep detected by the 
amplified sleep wake transition period model was slightly 
increased at 9.85 [4.88–14.00] hours. Patient demographics 
can be found in Table 1.

Apnea detection and AHI

There were 84 patients (68%) who had an estimated AHI > 5, 
40% had an AHI > 15, and 19% had an AHI > 30 based on 
the maximum AHI of 24-h segments during their ICU stays. 
Correspondingly, 55% of all 12-h segments show presence 
of sleep-disordered breathing(AHI > 5), while 28% and 12% 
were categorized as moderate and severe AHI, respectively. 
The mean AHI when including the amplified sleep wake 
transition instability (ASWTI) periods was slightly higher, 
see Table 2. Figure 1 shows a swimmer plot for the number 
of apneas occurring in the ICU and the temporal trends for 
all patients. The figure shows that the overall prevalence and 
temporal trends in the medical and surgical ICUs are similar 
and that the AHI levels per subject over time are relatively 
stable. Figure 2 shows histograms of the observed AHI in 
all 12-h segments. We further show 20-min example signals 
(both respiratory effort and  SpO2) with detected apneas for 
four patients with varying AHI in Fig. 3.

Sleep‑disordered breathing characterization

We calculated the hypoxic burden to determine the sever-
ity of the apneas. We found that the median [IQR] hypoxic 
burden at night was 2.8 [0.5, 9.8] %min/h and during the 
day was 4.2 [1.0, 13.7] %min/h. The hypoxic burden of 17% 
of all patients was ≥ 30%min/h, and 8% had a hypoxic bur-
den ≥ 50%min/h. Correlation between apnea-related hypoxic 
burden and general hypoxia measures was found to be low to 
moderate (r = 0.32, r2 = 0.1 for time below  SpO2 90, r = 0.62, 
r2 = 0.39 for oxygen desaturation index), see Figures E2 
and E3. Table 2 shows the results for the hypoxic burden in 
ICU patients. Additionally, we wanted to determine if there 
was self-similarity occurring in the signals. These types of 
breathing patterns are often present in patients with central 
sleep, periodic breathing, and high loop gain apnea versus 

obstructive sleep apnea. The percentage of days and nights 
showing high self-similarity for each category, AHI > 5, 
AHI > 10, and AHI > 15 was 7.3%, 6.8%, and 7.1% respec-
tively. The percentage of patients with self-similar patterns 
occurring is presented in Table 2; an example signal is 
shown in Fig. 4.

Subgroup analysis

AHI and hypoxic burden measures were not statistically 
different between patients with and without previous OSA 
diagnosis (median AHI 8.8 and 10.1, p-value = 0.37; hypoxic 
burden 5.8 and 4.7, p-value = 0.37). There was no signifi-
cant difference in the amount of maximum oxygen flow rate 
received between the groups (medians for both groups 2 
L/min, p-value = 0.33). The median AHI (9.7 and 6.1) and 
hypoxic burden (7.2 and 3.6) measures were not significantly 
larger for 24-h segments when patients received supplemen-
tal oxygen supply than when no oxygen was supplied (Mann 
Whitney U tests: p = 0.13 and 0.06 respectively); see Fig-
ure E4. Eighty patients had opioids administered at least 
once while wearing the belt. The percentage of patients who 
received oxygen therapy was higher in the opioid group 
(75%, n = 60) than in the non-opioid group (48%, n = 21, 
proportion z-test p = 0.002). We did not find any significant 
correlation between the dosage of opioids received and the 
maximum AHI or hypoxic burden (test results in the elec-
tronic supplementary material). Mean cumulative opioid 
and benzodiazepine doses were not significantly higher in 
the sleep-disordered breathing group (AHI > 5) than in the 
non-sleep-disordered breathing group (32 mg and 21 mg 
fentanyl equivalent respectively, p = 0.16; 4 and 2.6 mg 
midazolam equivalent respectively, p = 0.62). Of the patients 
who were mechanically ventilated before the study period, 
32 (25%) showed similar AHI and increased hypoxic burden 
values compared to non-mechanically ventilated patients: 
mean (SD) AHIs 16.9 (18.0), 16.7 (16.4), t-statistic − 0.06, 
p = 0.95; mean (SD) hypoxic burden 25.9 (49.0), 14.1 (23.9), 
t-statistic 1.8, p = 0.08). We did not observe statistically sig-
nificant AHI or hypoxic burden values for patients grouped 
by diagnoses (ANOVA p = 0.22, p = 0.50 respectively), see 
Table E1. Hospital readmission rates within 30 days were 
similar in the sleep-disordered and non-sleep-disordered 
breathing patients (26% readmission rates for both groups, 
chi squared p = 0.88; these rates are comparable to those 
seen in the literature [35].

Risk factor analysis

AHI > 5 was moderately predictable from admission 
variables using a random forest model (ROC AUC 0.61 
[0.504–0.71], PRC AUC 0.78 [0.68–0.87]. For all other 
AHI thresholds, the ROC value was not significantly 

Fig. 1  Swimmer plot showing the apnea detections for each patient 
in the study. Each row represents one patient, and each bin represents 
1  h colored as the amount of apnea events detected. Apneic events 
were only detected when patients were asleep. Each patient is aligned 
to the same day time so that the ticks represent the 20:00 timestamp. 
Patients have an indication on the plot if they had a previous docu-
mented diagnosis of obstructive sleep apnea, and whether or not they 
were receiving oxygen therapy. The patients are split depending on 
whether they were admitted to a medical ICU or a surgical ICU

◂
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different than 0.5. When predicting AHI occurring after 
a day/night with admission variables and AHI status 
(AHI > 5, > 10, > 15, > 30) from the preceding 12 h, we 
found that a logistic regression model was moderately able 
to predict AHI > 5 within the next 12 h (ROC AUC 0.57 
[0.52–0.62], PRC AUC 0.64 [0.57–0.71]). Results were not 
significant at any other AHI threshold. All prediction results 
can be found in the electronic supplementary material.

Discussion

The key findings of our study are as follows: (1) sleep-dis-
ordered breathing in the ICU is common and undiagnosed, 
(2) a fifth of all patients showed substantial hypoxic burden 
(≥ 30%min/h) associated with respiratory events, (3) seven 
percent of patients with sleep-disordered breathing showed 
symptoms of high loop gain, (4) opiate use did not substan-
tially explain sleep-disordered breathing or hypoxia events, 
(5) patients grouped by diagnoses showed similar mean 
AHIs; (6) severity of sleep-disordered breathing was only 
poorly predictable from baseline clinical variables.

Due to the lack of convenient detection methods, lit-
tle is known about the prevalence of undiagnosed sleep-
disordered breathing in the intensive care unit population 
during their ICU stay. Here, we investigated the prevalence 
of sleep-disordered breathing in both medical and surgi-
cal ICU populations using a single, wearable respiratory 
belt and  SpO2 with a machine learning model trained to 
detect apnea events. We found six studies in the literature, 
see Table 3 (see search parameters in the electronic sup-
plementary material) that similarly aimed to detect sleep-
disordered breathing using/from biosignals (respiratory 
signals, PSGs) while patients were in the ICU. Our study 
followed each patient the longest (maximum 7 nights) and 

Table 1  Patient characteristics of the 129 patients included in this 
study

n (%)

Age (years)a 67 (10)
Sex

  Male 72 (58)
  Female 52 (42)

Race
  White 108 (87)
  Black or African American 4 (3)
  Asian 2 (2)
  Other 3 (2)
  Unknown 7 (6)

Hispanic ethnicity 6 (5)
Unknown hispanic ethnicity 1 (1)
BMI (kg/m2) a 27.4 (6.0)
Wearable belt length (cm)a 89 (11)
Charlson comorbidity index 2.3 (2.1)
Weighted CCI 3.6 (3.6)
Previous OSA diagnosis 32 (26)
History of CHF 33 (27)
History of COPD 34 (27)
SOFA score at enrollment 2.30 (2.29)
ICU type

  Medical 45 (36)
  Surgical 79 (64)

Primary and/or secondary diagnosis
  Acute kidney injury 33 (27)
  Shock 30 (24)
  Respiratory failure 27 (22)
  Heart failure 23 (19)
  Anemia 20 (16)
  Sepsis 19 (15)
  Pneumonia 15 (12)
  Encephalopathy, altered mental status 14 (11)
  Pneumothorax, hemothorax, 13 (10)
  Pulmonary edema, pleural effusion
  Hemorrhage 10 (8)
  GI perforation, incarcerated
  Hernia, SBO, ischemic colitis 8 (6)
  Cirrhosis s/p liver transplant 7 (6)
  COPD, interstitial lung disease

ICU length of stay (days)a 5 (5)
Hospital length of stay (days)a 16 (15)
In-hospital mortality 0 (0)
Three-month mortality 21 (17)
Readmission

  Hospital within 30 days 17 (14)
  ICU within 30 days 8 (6)
  Emergency department within 30 days 7 (6)

Mechanical Ventilation
  During hospitalization 34 (27)

Table 1  (continued)

n (%)

  Before enrollment 26 (21)
  During study period 11 (9)
  After 14-day inpatient study period 8 (6)
  Duration (days) of mechanical ventilation 1 (0.2, 2.8)

Any oxygen therapy during study period 80 (65)
Medications usage within study period

  Opioids used 80 (65)
  Fentanyl equivalent (mg)a 27.8 (35.0)
  Benzodiazepines used 16 (13)
  Midazolam equivalent (mg)a 3.6 (5.2)
  Antipsychotics used 28 (23)
  DDD-method  equivalenta 0.2 (0.3)

a Mean (standard deviation), bmedian (inter-quartile range)
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included 124 subjects, whereas in the literature, there were 
14–127 patients studied for a maximum of one night. Prior 
studies found that the prevalence of sleep apnea (with an 
AHI > 5) was between 47 and 74% [12–17]. Our results, 
68% of patients with an AHI > 5, are consistent with these 
previous findings, falling towards the higher end of this 
range. This indicates a large burden of undiagnosed and 
untreated sleep-disordered breathing in the ICU popula-
tion. We also found that ~ 19% of patients had an AHI ≥ 30. 

Sleep-disordered breathing detected during our study only 
applies to ICU stay — patients with high AHI in the ICU 
may or may not have sleep-disordered breathing outside 
of this setting. Likely, parts of the measured AHI can 
be attributed to pre-existing sleep-disordered breathing, 
while there are also many factors in the ICU and in criti-
cally ill patients that may cause or exacerbate sleep-disor-
dered breathing. Further studies are needed to determine 
the underlying cause of the detecting sleep-disordered 

Table 2  Sleep-disordered 
breathing detection and 
characterization

All 129 patients were stratified by baseline or clinical variables (rows), and by their measured apnea–hypo-
pnea index (columns). Abbreviations: AH, apnea–hypopnea index; ASWTI, amplified sleep wake transi-
tion instability; CCI, Charlson comorbidity index; CAM-S, confusion assessment method score; ICU LOS, 
intensive care unit length of stay; CHF, congestive heart failure; COPD, chronic obstructive pulmonary 
disease

No sleep-disor-
dered breathing
AHI ≤ 5

Mild
5 ≤ AHI < 15

Moderate
15 ≤ AHI < 30

Severe
30 ≥ AHI

N (%) patients 42 (34) 32 (26) 26 (21) 24 (19)
N (%) females 20 (38) 13 (25) 9 (17) 10 (19)
N (%) males 22 (31) 19 (26) 17 (24) 14 (19)
With ASWTI-sleep:
N (%) patients

37 (30) 35 (28) 29 (23) 23 (19)

N (%) BMI <  = 25 21 (41) 12 (24) 9 (18) 9 (18)
N (%) BMI > 25 21 (29) 20 (27) 17 (23) 15 (21)
Hypoxic burden (%min/h) 2.1 7.6 17 47.9
Oxygen desaturation Index (3%) 6.3 11.1 14.4 26.6
% Sleep spent with  SpO2 < 90 4 5 3 5
With ASWTI-sleep: Oxygen Desatura-

tion Index (3%)
6.4 11.1 14.3 25.5

With ASWTI-sleep:
% sleep spent with  SpO2 < 90

4 5 3 5

AHI mean 1.8 7.0 16.7 31.0
AHI standard deviation 0.9 3.3 6.1 16.5
N (%) patients with self-similarity 9 (21) 11 (26) 5 (19) 5 (21)
N (%) patients with CAM-S <  = 3 31 (40) 20 (26) 15 (19) 11 (14)
N (%) patients with 3 < CAM-S <  = 6 6 (23) 8 (31) 3 (12) 9 (35)
N (%) patients with CAM-S > 6 5 (25) 3 (15) 8 (40) 4 (20)
N (%) patients with 3-month-mortality 7 (33) 6 (29) 1 (5) 7 (33)
N (%) with ICU LOS <  = 3 days 21 (40) 12 (23) 10 (19) 10 (19)
N (%) with ICU LOS > 3 days 21 (30) 20 (28) 16 (23) 14 (20)
N CCI < 2.5 28 (37) 17 (22) 12 (16) 19 (25)
N CCI > 2.5 14 (29) 15 (31) 14 (29) 5 (10)
N without oxygen ever 13 (46) 4 (14) 6 (21) 5 (18)
N with oxygen ever 29 (30) 28 (29) 20 (21) 19 (20)
N without opioids ever 9 (25) 7 (19) 10 (28) 10 (28)
N with opioids ever 33 (38) 25 (28) 16 (18) 14 (16)
N wo/ benzodiazepines 29 (31) 22 (23) 25 (26) 16 (19)
N w/ benzodiazepines 13 (45) 10 (34) 1 (3) 5 (17)
N without CHF 32 (36) 24 (27) 14 (16) 20 (22)
N with CHF 10 (29) 8 (24) 12 (35) 4 (12)
N without COPD 28 (31) 23 (26) 21 (23) 18 (20)
N with COPD 14 (41) 9 (26) 5 (15) 6 (18)
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breathing and to determine whether the sleep-disordered 
breathing will persist after ICU stay.

The apnea-related hypoxic burden, measuring hypoxia 
severity specifically related to apnea events, has not been 
previously studied in the ICU. Previous research has shown 
that a hypoxic burden above 43%min/h had a significant 
association with cardiovascular disease–related mortality for 
a sleep laboratory cohort [32]. We found that 17% of patients 
in our study had a hypoxic burden ≥ 30%min/h, and 8% had 
a hypoxic burden ≥ 50%min/h; these patients may benefit 
from screening oximetry post-discharge. Moreover, the low 
to moderate correlations between apnea-specific hypoxic 
burden and more general hypoxia indices demonstrate that 
apnea-specific hypoxia is not well measured with standard 
desaturation indices — and consequently, that the hypoxic 
burden provides additional clinical information.

Accurately identifying patients at risk for sleep-disor-
dered breathing in advance would allow for more efficient 
resource allocation in clinical care. When investigating 
the predictability of patients’ maximum AHI based on 

admission variables and daily vital, labs and medication 
variables, we found that only the AHI > 5 prediction was 
modestly accurate and statistically significant. Therefore, 
predicting AHI for ICU patients based on clinical variables 
alone proved difficult. As this is an observational study, 
all patients are treated with standard care, including inter-
ventions that may relate to sleep apnea treatment. This is 
evident in our dataset, for example, as patients on opioids 
were more likely to receive oxygen therapy (nasal cannula or 
continuous positive airway pressure (CPAP)) to prevent/treat 
breathing problems that are typically associated with opi-
oids. Patients with oxygen therapy showed a greater AHI and 
hypoxic burden, despite using oxygen. Two possible expla-
nations are that patients with higher risk of sleep apnea may 
have been identified by clinicians and measures to mitigate 
sleep apnea were taken, or that patients with occurring oxy-
gen desaturations were treated with oxygen therapy which 
did not resolve sleep apnea pathophysiology. Furthermore, 
given those occurring treatments, we did not find any risk 
factors that might help to identify this severe undiagnosed 

Table 3  Literature review

Study N Method of OSA detection Number 
of nights 
studied

Findings

[12] 64 male critical care unit patients Polysomnography 1 night AHI ≥ 5, 47% of patients
Oxygen desaturation to ≤ 90%, 61% of sample

[13] 56 ICU patients Polysomnography 1 night AHI ≥ 5, 40 patients (71%)
[14] 73 patients admitted to the cardiac ICU Cardiorespiratory sleep 

study and/or polysom-
nography

1 night Positive sleep study (AHI > 5), 54 patients 
(74%)

Confirmed diagnosis (from outpatient sleep 
study), 46 patients (63%)

Mild OSA (AHI ≥ 5), 14 patients (30%)
Moderate OSA (AHI ≥ 15), 11 patients (24%)
Severe OSA (AHI ≥ 30), 21 patients (46%)

[15] 127 coronary care unit patients Respiratory polygraphy 1 night Non-OSA (AHI < 15), 38 patients
OSA (AHI ≥ 15), 89 patients
Median [IQR] oxygen desaturation 

index > 4%/h for non-OSA group, 4.7 
[3.5–10.1]

Median [IQR] oxygen desaturation 
index > 4%/h for OSA group, 20.2 [6.6–38.1]

Median [IQR] time with  SaO2 < 90% for non-
OSA group, 1.6 (0.2–10.0)

Median [IQR] time with  SaO2 < 90% for OSA 
group, 4.20 (0.9–15.6)

[16] 14 patients admitted to an intermediate ICU Portable polysomnography 1 night Obstructive sleep apnea syndrome, 10 patients 
with mean respiratory disorder index  h−1 
(RDI) 60.1 (25.9)

Central sleep apnea, 2 patients with mean RDI 
 h−1 45 (28.3)

Obesity-hypoventilation syndrome (OHS), 2 
patients with mean RDI  h−1 12.5 (3.5)

[17] 31 ICU patients Respiratory polygraph 1 night Mean obstructive apnea index (OAI) in patients 
with OAI > 5, 13 ± 6

New diagnosis of OSA in 14 patients (56%)
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sleep-disordered breathing. Finally, we observed most 
patients in the ICU to be compliant with the simple wearable 
device and it did not significantly disrupt patient care. Sleep 
apnea and cyclical hypoxia have well-established undesir-
able consequences including hemodynamic stress, endothe-
lial dysfunction, dysmetabolism, and inflammation[36–41].

While the sample size of our study is larger than of com-
parable studies in the literature, 124 patients are still a rela-
tively small cohort. We are planning to do a follow-up study 
when enrollment of the clinical trial is complete, at which 
time we will have the full sample size available. Currently, 
we do not obtain statistical significance in the associations 
between AHI and outcomes such as CAM-S scores and mor-
tality. We believe it is more appropriate to report this with 
the full sample size.

The gold-standard, defined by the AASM, to assess sleep-
disordered breathing and diagnose sleep apnea, remains 
full polysomnography. In this study, no full PSGs were per-
formed but the method described uses a single respiratory 
effort band and standard-ICU pulse oximeter. Standard ICU 
oximeters typically have a lower sampling frequency and 
potentially different algorithmic settings, which are usually 
adjustable by the ICU clinicians, compared to sleep PSG 
oximeter. Full polysomnography would be more accurate 
yet would have been unfeasible relative to the recording 
durations we obtained, especially repeatability. Although 

we have validated the presented approach in 404 subjects 
against full PSGs and manual single-expert scoring in the 
sleep laboratory, it is possible that results in the ICU might 
deviate somewhat. In the sleep laboratory, the validation 
performance was an area under the receiver operating curve 
of 0.94 and an area under the precision-recall curve of 0.48, 
an AHI categorization accuracy of 0.80 and an r-squared of 
0.92 when predicting AHI values. Performance concerns 
are addressed, at least in part, as the model was specifically 
designed using readily interpretable and clinically significant 
features for decision-making, which allow us to verify the 
results by direct visual inspection. Indeed, we have manually 
reviewed the results extensively and have seen no evidence 
of differences in belt signal quality between the sleep labo-
ratory and the ICU. Furthermore, artifacts are unlikely to 
be classified as apnea events because of the preprocessing 
steps, and because sleep has to be detected and an apnea 
event has to be detected by two different models — making 
it less likely that non-physiological artifacts get classified 
as apnea events. It is more likely that a performance devia-
tion from the published validation study might result due 
to different and more complex physiological states, sleep 
architecture and fragmentation, and breathing patterns in 
the ICU. According to the AASM manual, apnea and hypo-
pnea events need to show drops in peak signal excursion 
in breathing signals and/or a drop in  SpO2 signals from 

Fig. 2  AHI and hypoxic burden 
distribution for 12-h segments. 
Distributions of apnea–hypo-
pnea index (Panel A) and the 
apnea-specific hypoxic burden 
(Panel B) among all 12-h seg-
ments included in the analysis, 
i.e., at least 90 min of data 
available and at least 1 h of 
sleep. 8am–8 pm and 8 pm–
8am segments are defined to be 
“day” and “night” respectively. 
Left panels show ordinary his-
tograms, and right panels show 
cumulative histograms. We have 
found similar amount of AHI 
levels for day and night periods. 
Fifty-four percent of all nights 
show an AHI > 5 and 27% an 
AHI > 15. Similarly, the hypoxic 
burden is similar for day and 
night and 17% of nights show 
a hypoxic burden larger than 
15%desaturation-min/h
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pre-event baseline. However, pre-event baseline is not spe-
cifically defined, resulting in inter-rater disagreement which 
might be increased in the ICU due to different types of 
breathing patterns. Therefore, future studies to characterize 
sleep analysis performance of reduced and more patient-
friendly equipment in the ICU, need not only to validate 
against PSG but also against scoring by multiple experts to 
allow comparison of machine-expert with and expert-expert 

agreement. Without having these data, we may need to be 
conservative with conclusive statements about diagnoses 
based on the measured AHI. While the substantial amount of 
detected apnea events does show a high prevalence of sleep-
disordered breathing in the ICU, it remains to be investigated 
if measured AHI categories reflect a classical diagnosis of 
sleep apnea.

Fig. 3  Example detection with signal. Twenty-minute example 
respiratory and  SpO2 signals with detected apnea events for each 
apnea–hypopnea index category. A 70-year-old female with previ-
ous OSA diagnosis admitted to medical ICU due to respiratory fail-
ure, AHI = 2. B 56-year-old male without previous OSA diagnosis 

admitted to surgical ICU due to myxoid chondrosarcoma, AHI = 12. 
C 75-year-old male without previous OSA diagnosis admitted to sur-
gical ICU after a fall, AHI = 22. D 57-year-old male without previous 
OSA diagnosis admitted to medical ICU due to gastrointestinal bleed-
ing, AHI = 54
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A second notable limitation of this study is that the clini-
cal trial that these patients were enrolled involved rand-
omizing patients into three groups, where two of the groups 
received a low dose of dexmedetomidine (0.1 or 0.3 mcg/
kg/h) overnight continuously, and the third group received 
placebo (normal saline). Although previous studies have 
shown low-dose continuous dexmedetomidine infusions did 
not result in respiratory depression in ICU patients [42, 43], 
the effects of dexmedetomidine on neurological, cardiopul-
monary, and sleep regulation in ICU populations need to be 
investigated further. As this is an ongoing quadruple blind 
trial, we could not analyze the effect of this randomization 
and could not estimate a potential influence of the medica-
tion on our results.

Further limitations of this study include that the study 
was done in a single center and lacks diversity in terms 
of race (87% white) and that the cohort of this study was 
limited to patients fulfilling the inclusion criteria of the 
associated clinical trial who agreed to wear the respira-
tory band. Some patients were unable or unwilling to 
wear the band due to wounds, rib fractures, or behavio-
ral constraints. Thus, the current study is limited by this 
selection bias. Different types of ICUs (e.g., neurological, 

general post-operative, cardiothoracic) will have different 
risk factors and comorbid conditions, and results could 
be different.

In summary, undiagnosed sleep-disordered breathing 
is common in the ICU and is associated with a substan-
tial burden of hypoxia and periodic breathing. Our results 
demonstrate the potential of detecting sleep-disordered 
breathing without the need for formal polysomnography. 
The AHI detected may be different from that estimated by 
conventional polysomnography, due to recorded param-
eters (no EEG) and patterns of disordered breathing in 
the ICU which may not be present in the sleep labora-
tory. Admission data and clinical variables available at 
the beginning of the night were not sufficient to predict 
undiagnosed sleep-disordered breathing which shows that 
accurate and reliable detection of sleep-disordered breath-
ing in the ICU is difficult to do without the use of bio-sig-
nals such as respiration signals and SpO2. This highlights 
the importance of implementing convenient monitoring 
devices in the ICU setting.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11325- 022- 02698-9.

Fig. 4  Self-similar breathing. Example respiratory and  SpO2 signal with apnea detections and detected high self-similarity (periodic breathing). 
Patient was female, 88 years old, and admitted to the surgical ICU due to a hip fracture

https://doi.org/10.1007/s11325-022-02698-9
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